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Abstract: Agriculture in the southeastern United States (SEUS) is heavily reliant upon water resources
provided by precipitation during the warm season (June–August). The convective and stochastic
nature of SEUS warm season precipitation introduces challenges in terms of water availability in
the region by creating localized maxima and minima. Clearly, a detailed and updated warm season
precipitation climatology for the SEUS is important for end users reliant on these water resources. As
such, a nonlinear unsupervised learning method (kernel principal component analysis blended with
cluster analysis) was used to develop a NARR-derived SEUS warm season precipitation climatology.
Three clusters resulted from the analysis, all of which strongly resembled the mean spatially (r > 0.9)
but had widely variable precipitation magnitude, as one cluster denoted a mean pattern, one a
dry pattern, and one a wet pattern. The clusters were related back to major SEUS warm season
precipitation moderators (tropical cyclone landfall and the El Niño–southern oscillation (ENSO)) and
revealed a clearer ENSO relationship when discriminating among the cluster patterns. Ultimately,
these updated SEUS precipitation patterns can help end users identify areas of notable sensitivity to
different climate phenomena, helping to optimize the economic use of these critical water resources.

Keywords: warm season rainfall; southeastern United States; kernel principal component analysis;
cluster analysis

1. Introduction

The southeastern United States (SEUS) is a critical agricultural region for the nation
and relies heavily upon the abundant precipitation associated with its humid subtropical
climate. In 2020, the states of Mississippi, Alabama, Georgia, Florida, and Tennessee
produced over USD 27 billion in agricultural products, of which roughly USD 13 billion
was crop production [1]. This equates to roughly 10% of the total U.S. production by
farms within the last two years (USD 137 billion), clearly demonstrating the importance
of agriculture in these regions. Most agricultural production in the SEUS relies heavily
upon precipitation during the primary growing season, which is centered on the warm
season for the region (June–August). However, climatological conditions in the SEUS are
notably different during the warm season relative to other months, with dominant weather
patterns associated with the subtropical high that limit precipitation events to periodic,
unpredictable convective episodes [2]. As a result, agricultural producers in many regions
rely heavily upon groundwater resources when warm season rainfall is limited.

In addition to the reliance of groundwater resources, hydrologic patterns in the SEUS
are notably affected when precipitation is abnormally high or low for a given warm season.
The sporadic nature of warm season precipitation, in both time and space [2], can cause
dramatic shifts in the local hydrology if precipitation is not received in primary recharge
zones for those hydrologic bodies [3,4]. This in turn can affect hydrologic systems and
infrastructure downstream, meaning these critical water resources can have a compounding
effect when reacting to anomalous precipitation. Additionally, runoff from these extreme

Climate 2023, 11, 2. https://doi.org/10.3390/cli11010002 https://www.mdpi.com/journal/climate

https://doi.org/10.3390/cli11010002
https://doi.org/10.3390/cli11010002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/climate
https://www.mdpi.com
https://orcid.org/0000-0002-2480-9117
https://doi.org/10.3390/cli11010002
https://www.mdpi.com/journal/climate
https://www.mdpi.com/article/10.3390/cli11010002?type=check_update&version=1


Climate 2023, 11, 2 2 of 19

events [5] can transport potentially toxic materials into local hydrologic systems, impacting
residential and commercial water sources as well as agricultural productivity.

Previous studies have investigated the climatology of extreme precipitation in the
SEUS region owing to the economic impacts resulting from the abundant agriculture. Sev-
eral studies [6,7] found that extreme precipitation events in the SEUS were most frequently
observed in the eastern portion of the region during the warm season, though they were
possible at any time, and that western regions of the SEUS experienced their peak precipi-
tation during the transition seasons. Work in [8] linked warm season SEUS precipitation
to synoptic scale features derived from their synoptic climatology methodology, noting
850 mb moisture ridges, especially those co-located with 850 mb equivalent potential tem-
perature ridges and minima in 500 mb relative vorticity (i.e., mid-level ridges) were key
features associated with extreme heavy rainfall. Other studies [9–11] noted the role of
tropical cyclones on heavy SEUS precipitation events, though these impacts were confined
primarily to the end of the June–August (JJA) warm season period.

While extreme high precipitation events are certainly impactful across the SEUS,
extended periods of low precipitation (leading to hydrologic drought) can be equally
impactful for the economics of the region. Studies investigating SEUS drought have
focused on individual low-precipitation events, such as the 2005–2007 drought [12]. This
drought was attributed to precipitation variability within the Pacific North American
teleconnection coupled with reduced intertropical convergence zone (ITCZ) precipitation
consistent with La Niña conditions. Their study also linked warm season precipitation
variability to a teleconnection between the tropical Pacific and conditions from Mexico
through the Caribbean, first noted in [13]. The work in [14] described the recent SEUS
flash drought of 2019 that began at the end of the JJA warm season and was strongly
linked to phases of teleconnections (here the Indian Ocean dipole [IOD] with the El Niño–
southern oscillation [ENSO]). In [15], spatial SEUS drought patterns were characterized
using simulations from the National Oceanic and Atmospheric Administration’s National
Water Model (NOAA-NWM [16]). However, their study did not address the specific role of
an excess or dearth of precipitation in simulating SEUS hydrologic patterns. A precipitation
climatology noting areas where precipitation is more infrequent relative to a baseline would
still have value in identifying locations where hydrologic systems within the SEUS are
sensitive to high variability in precipitation amount.

In recent years, the advent of machine learning has opened new methodological ap-
proaches to identifying climatological features within weather datasets. Unsupervised
learning [17], a technique where the data are provided as a set of rules and asked to iden-
tify patterns without any user input, has shown potential to reveal new patterns within
atmospheric science problems. In [18], previously unseen severe weather outbreak patterns
were observed for the eastern United States when formulated using a kernel principal
component analysis (KPCA [19]) combined with cluster analysis [20]. The authors of [21]
revealed new useful patterns and variables for identifying rapid intensification within trop-
ical cyclones when utilizing a similar blend of KPCA with clustering. SEUS precipitation
studies such as [8,22] have employed basic cluster analysis (without any component analy-
sis preprocessing), while [23] utilized self-organizing maps (an unsupervised technique) to
identify synoptic patterns associated with southern Appalachian hydrometeorology. These
studies focused heavily on the synoptic conditions driving the precipitation and considered
annual SEUS precipitation, not necessarily confined to the warm season. Furthermore,
no study has investigated the utility of incorporating nonlinear relationships within the
SEUS precipitation fields when constructing a warm season climatology. As such, in this
study we develop a warm season SEUS precipitation climatology employing unsupervised
learning methods, including KPCA preprocessing to test for nonlinear relationships, with
the underlying context of future hydrologic applications.

The primary objective of this paper is to employ unsupervised learning to identify
the most prevalent spatial patterns of warm season precipitation across the SEUS. Here,
SEUS precipitation is quantified as 15-day precipitation accumulations, as described below.
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These patterns will be used in future studies to link back to local SEUS hydrologic features
to identify areas for further study within the context of SEUS hydrology. In Section 2, we
discuss the data and methods used herein. Section 3 describes the primary results and
shows the patterns revealed from the cluster analysis, while Section 4 provides a summary
and conclusions.

2. Data and Methods
2.1. Datasets

Unsupervised learning methods and KPCA require spatially and temporally contin-
uous datasets. The geographic shape of the Gulf Coast makes this a unique challenge
for more traditional high-resolution datasets that rely heavily upon gauge data and thus
are only valid over land (such as the Multi-Sensor Precipitation Estimates dataset [24]).
Furthermore, a dataset with high spatial resolution was desirable to ensure smaller-scale
variability was able to be visualized. While many datasets exist that meet these criteria,
the North American Regional Reanalysis (NARR [25]) precipitation product was selected
for this study owing to its long period of record (1979–present) and the 32 km Lambert
Conformal grid that spans the full contiguous United States. According to [25], the precipi-
tation data within the NARR employed real-time data assimilation to build the product
by disaggregating hourly rain gauge data for the entirety of the contiguous United States
(e.g., no model data were used in its creation). Data over the Gulf of Mexico (where no
gauge exists) were disaggregated from the Climate Diagnostics Center’s Merged Analysis
of Precipitation (CMAP) pentad dataset, which relies primarily on satellite estimates of
precipitation as well as some estimates from National Centers for Environmental Predic-
tion/National Center for Atmospheric Research (NCEP/NCAR) reanalysis datasets [26].
Though the reliability of data over the Gulf of Mexico may be lower, our study is most
interested in precipitation patterns over land where these errors are minimized. That is, the
spatial continuity within the NARR, as well as its longer period of record, were deemed
more suitable for the methods employed in this study, despite these limitations. Note that
while hourly data were used in the creation of the NARR, the precipitation provided by the
NARR dataset is a 3-hourly accumulation.

In this study, the warm season is confined to all days from 1 June–31 August for
each study year (1979–2021). We used the 3-hourly accumulated precipitation diagnostic
variable from the NARR to build a database of daily SEUS precipitation. In this study, a
day spanned from 0600 UTC (roughly local midnight) to 0300 UTC the following day to
ensure local midnight was not counted twice. Even when upscaling the temporal resolution
to daily, an abundance of zeroes led to a highly Γ-distributed dataset (Figure 1a). To
limit the influence of excessive zeroes on the unsupervised learning methods (a critical
step [20]), a 15-day centered moving sum of precipitation was computed at each grid point
for each warm season day, which approximates a 2-week precipitation accumulation. This
modified the precipitation distributions considerably (Figure 1b) and reduced the frequency
of zero-value observations.

Spatially, the selected study domain comprised 3341 NARR grid points over the
SEUS. Figure 2a shows the mean 15-day moving sum warm season SEUS precipitation
accumulation for the full period over the study domain. The standard deviation is provided
as well as a measure of spread about the mean (Figure 2b). The mean pattern (Figure 2a)
shows the well-established [2] maximum of precipitation along the Gulf and Atlantic
coasts. As expected, the increased variability associated with the less reliable satellite-
derived precipitation estimates over the Gulf of Mexico and Atlantic was also evident in
the standard deviation fields (Figure 2b). Related to the spatial means, we also computed
the annual means for each spatial field, as well as their standard deviations (Figure 3).
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for all 15-day moving sum data for the study domain. 

Figure 1. Daily precipitation (panel (a)) for NARR grid point nearest Birmingham, AL (33.24277◦ N,
86.79012◦ W) and 15-day moving sum of precipitation for the same grid point (panel (b)). Note the
near elimination of the impacts of zeroes when employing the moving sum.

Climate 2022, 10, x FOR PEER REVIEW 4 of 20 
 

 

 
(a) (b) 

Figure 1. Daily precipitation (panel a) for NARR grid point nearest Birmingham, AL (33.24277° N, 

86.79012° W) and 15-day moving sum of precipitation for the same grid point (panel b). Note the 

near elimination of the impacts of zeroes when employing the moving sum. 

 
(a) 

 
(b) 

Figure 2. Mean precipitation (mm—panel a) and precipitation standard deviation (mm—panel b) 

for all 15-day moving sum data for the study domain. 
Figure 2. Mean precipitation (mm—panel (a)) and precipitation standard deviation (mm—panel (b))
for all 15-day moving sum data for the study domain.



Climate 2023, 11, 2 5 of 19
Climate 2022, 10, x FOR PEER REVIEW 5 of 20 
 

 

 

Figure 3. Annual average (top panel) and standard deviation (bottom panel) 15-day moving sum 

precipitation for the full SEUS study domain. Information on the linear fit for each positive trend is 

provided in the respective top left corner of the panel. 

This analysis revealed a statistically significant positive trend in both the mean (p = 0.0007) 

and standard deviation (p = 1.3 × 10−7), suggesting that, for the entirety of the domain, 15-

day aggregated precipitation has become both more plentiful and more variable over the 

40-year study period. 

When performing cluster analysis on data with a strong temporal trend (Figure 3), it 

is important to detrend the fields prior to the analysis to ensure the primary clustering is 

not simply detecting the temporal shift. Thus, we standardized these fields by formulating 

a linear fit (equations provided in Figure 3) for the annual means and standard deviations. 

We computed the modeled annual mean and standard deviation for each year and com-

puted z-scores at each grid point using those detrended annual mean and standard devi-

ations. The resulting time series (Figure 4) showed no upward trend, as well as nonsignif-

icant slopes (p = 0.89 for the means, p = 0.94 for the standard deviations), which ensured 

the cluster analysis would be standardized relative to individual precipitation years, not 

based on the strong upward trend portrayed in Figure 3. These detrended annual z-scores 

were used as input into the cluster analysis methods described below. 

Figure 3. Annual average (top panel) and standard deviation (bottom panel) 15-day moving sum
precipitation for the full SEUS study domain. Information on the linear fit for each positive trend is
provided in the respective top left corner of the panel.

This analysis revealed a statistically significant positive trend in both the mean (p = 0.0007)
and standard deviation (p = 1.3 × 10−7), suggesting that, for the entirety of the domain,
15-day aggregated precipitation has become both more plentiful and more variable over
the 40-year study period.

When performing cluster analysis on data with a strong temporal trend (Figure 3), it is
important to detrend the fields prior to the analysis to ensure the primary clustering is not
simply detecting the temporal shift. Thus, we standardized these fields by formulating a
linear fit (equations provided in Figure 3) for the annual means and standard deviations. We
computed the modeled annual mean and standard deviation for each year and computed
z-scores at each grid point using those detrended annual mean and standard deviations.
The resulting time series (Figure 4) showed no upward trend, as well as nonsignificant
slopes (p = 0.89 for the means, p = 0.94 for the standard deviations), which ensured the
cluster analysis would be standardized relative to individual precipitation years, not based
on the strong upward trend portrayed in Figure 3. These detrended annual z-scores were
used as input into the cluster analysis methods described below.
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Figure 4. Same as Figure 3, but for the detrended z-scores of precipitation mean (top panel) and
standard deviation (bottom panel). Note that both trends are now nonsignificant (p = 0.93 for the
means, p = 0.91 for the standard deviations).

2.2. Cluster Analysis Methodology

As shown above, numerous studies [8,22,23] have employed cluster analysis when iso-
lating synoptic-scale structures associated with SEUS precipitation patterns. The two most
common types of cluster analysis methods (k-means and hierarchical) utilize statistical
distance (often Euclidean) to quantify the similarity among points within a dataset [20].
Hierarchical methods group clusters with the smallest Euclidean distance, based on a
given cluster linkage method, while k-means attempts to minimize intracluster separation
while maximizing intercluster separation through convergence of the algorithm on a set
of optimal cluster centers. An important limitation of these approaches is an underlying
assumption that the data are linearly separable, which is not always the case.

Recent studies have shown improved clustering by preprocessing the analysis using
principal component analysis [PCA-20], which decomposes the database into dominant
variability modes. This method has shown some benefit, but as PCA uses a linearly
based similarity matrix (traditionally the correlation or covariance matrix), this approach
still has an inherent linear assumption. More recent developments by [19] suggested an
alternative similarity matrix could be employed to characterize nonlinear variability. This
alternative matrix, the kernel matrix K from support vector machines [27], retains the
original characteristics of a correlation/covariance matrix (positive definite, symmetric,
and nonsingular) while representing the data in a nonlinear Hilbert space where previously
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unseen nonlinear separability can be discovered and quantified. This approach, known as
kernel PCA (KPCA), was used in our study to assess the presence of any such nonlinear
relationships within the SEUS precipitation anomaly fields.

The KPCA mathematical approach [19,21] is almost identical to linear PCA (except for
the computation and centering of the similarity matrix) in that it employs eigenanalysis on
a similarity matrix (here K) to obtain basis vectors that describe the data variability. The
eigenanalysis equation used in KPCA (Equation (1)) is calculated by:

Kcenterαi = λiαi (1)

where αi and λi are eigenvalues and eigenvectors of Kcenter, and Kcenter is a centered kernel
matrix computed from Equation (2):

Kcenter = K− 21 1
n

K + 1 1
n

K1 1
n

(2)

where 1 1
n

is a matrix whose elements are all 1
n where n is the number of columns of K (in

our study, the 43 years of data). The centering step is required as K does not guarantee a
centered similarity matrix, a requirement of eigenanalysis. While numerous matrices can
serve as K, there are two functions that are used most frequently when computing K, a
polynomial kernel (Equation (3)) or a radial basis function (RBF) kernel (Equation (4)):

K(x,y) = (xy + 1)d (3)

K(x,y) = exp(− 1
2σ2 ||x−y||2). (4)

In most applications of KPCA, the vector y is simply y = xT, as this approach con-
structs a symmetric K. For the polynomial kernel, the variable d represents the degree of
the polynomial, while σ represents the spread of the radial basis function kernel. These
values should be tuned to yield different solutions for K, with the goal of finding the global
minimum in cluster cohesion (intracluster separation) with a maximum in intercluster
separation. Note that traditional PCA will yield similar results to polynomial kernel KPCA
when d = 1 (a linear kernel).

An important limitation of KPCA is its direct interpretability. In many rotated PCA
studies [28,29], it is possible to interpret the resulting loading matrix (eigenvectors scaled
by the square root of their eigenvalue) directly, since the transformation was linear. With
KPCA, the use of an unknown kernel map function ϕ(x) confounds the ability to back-
transform the data to the original data space. Instead, the dot product of ϕ(x) with itself or
another kernel map function yields the matrix K by the kernel trick [27], which does not
require a priori knowledge of ϕ(x). While this limits direct interpretability, the resulting
KPC loadings can be used as an input into a traditional cluster analysis method (in our study
we used k-means), which potentially provides updated clusters based on the nonlinear
relationships characterized by the kernel transformation.

Selecting the optimal number of loadings to retain, which is a recurring problem with
all PCA approaches [28,29], becomes more challenging with KPCA for reasons outlined
above. Additionally, the k-means approach has an inherent limitation that the number
of clusters must be known before the method can be used. For our study, we tested be-
tween three and eight clusters. These values were somewhat arbitrary, though more than
eight clusters decreased the quality of the analysis by resulting in multiple single-member
clusters (not shown), while two clusters yielded results very similar to the SEUS mean. We
also tested retaining between two to 42 KPC loadings (as the 43rd eigenvalue always has
a magnitude of zero), as well as multiple values for d (all integers spanning 1 to 4) and
σ (all integers from 10 to 200) for the polynomial and RBF kernels, respectively. In total,
47,970 permutations of retained clusters, loadings kept, and kernel configurations were
tested to search for an optimal maximum that minimized cluster cohesion and maximized
inter-cluster separation. This extensive testing increased the likelihood that a global maxi-
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mum in cluster analysis performance could be found. As a baseline, we also formulated
a k-means analysis directly on the anomaly fields to ascertain what benefit, if any, the
KPCA preprocessing offered to the analysis, and thereby determine the extent of nonlinear
relationships within the precipitation fields.

Quantifying the quality of the clustering, which was critical for identifying the optimal
configuration from among the possible tested analysis methods, was done uing a combined
method implementing the silhouette coefficient [30] and the average correlation between
the cluster members and their composite mean. A metric derived from [31] was used
to quantify the global silhouette coefficient performance from each permutation using
Equation (5):

S∗ =
(

1− ms

N

)(
S
)

(5)

where N is the total number of samples, ms is the number of misclassified clusters (based on
negative S values), and S is the average of all silhouettes for the given cluster configuration.
Some kernel configurations (mostly the polynomial kernels) yielded multiple clusters that
comprised only 1–2 precipitation years, with one cluster retaining the remaining 40 years.
These configurations yielded the highest values for S∗ owing to the proximity of a single
case with its composite mean (e.g., the mean of a cluster of one is just that case, so its
distance from the mean is zero). These results were undesirable, as the resulting analysis
yielded one large cluster composite that closely resembled the global mean for all years
while remaining clusters comprised individual cases with inflated S* values. We minimized
this issue by using a weighted mean for S*, computed using Equation (6) as:

¯
S=

n

∑
i=1

Ni
N

(
¯
Si) (6)

where i represents a given cluster number from the given analysis. This approach placed
higher emphasis on clusters with larger numbers of members, which reduced the inflation
of S∗ with clusters that contained only 1–2 events.

Once the weighted S* value was computed for each permutation, they were compared
against a baseline S* from the cluster analysis that did not include any KPCA preprocessing.
All KPCA-preprocessed results, if any, whose S* value exceeded the baseline value for the
given number of clusters were retained for further analysis.

Once the subset of KPCA preprocessed cluster results was obtained, the composite
mean of each cluster’s precipitation anomalies was computed. These composite means
were correlated against the individual cluster’s constituent years, and the average of these
cluster correlations was computed as a measure of cluster match to its constituent cases.
The configuration that yielded both an S* exceeding the baseline and the highest average
correlation among clusters was retained as the optimal configuration. Note that this was
calculated for each number of retained clusters separately, since the average correlation
between clusters and their members naturally increases as the number of clusters increases
(owing to smaller cluster memberships with larger numbers of clusters—see Tables 1 and 2
below). This trend was not noticeable with S*. Outcomes from these analyses, as well as
the composite fields that resulted from the optimal clustering method, are presented in
Section 3.

Table 1. Baseline cluster analysis (no KPCA) for each number of retained clusters.

Retained Clusters ¯
S Avg. Correlation

3 0.105 0.763
4 0.097 0.777
5 0.096 0.790
6 0.088 0.807
7 0.097 0.812
8 0.080 0.825
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Table 2. Same as Table 1, but for the best KPCA configuration. No results for six or seven clusters
outperformed the baseline, so the values were not provided. The loadings column refers to the
number of retained loadings for the optimal KPCA configuration.

Kernel Loadings Retained Clusters ¯
S Avg. Correlation

Linear polynomial 9 3 0.105 0.765
RBF (σ = 29) 24 4 0.100 0.788
RBF (σ = 42) 21 5 0.097 0.794
RBF (σ = 41) 36 8 0.081 0.829

3. Results
3.1. Cluster Analysis Overall Results

As mentioned above, 47,970 possible loading–kernel–cluster combinations were tested
to search for the clustering methodology that maximized S∗. The highest S∗ (0.105) resulted
from retaining three clusters using a linear kernel with KPCA preprocessing. However,
the benefits of KPCA were minimal, as seen in the results for the baseline (Table 1) and
KPCA-preprocessed (Table 2) cluster analysis. Note that S∗ values considerably higher than
the best performing cluster analysis method were observed when employing polynomial
kernels (discussed above) but given how the cases were distributed among the clusters (not
shown), these results were discarded.

The optimal KPCA-preprocessed results differed from the baseline cluster analysis
by moving one year, 2005, from cluster 2 to cluster 1, which led to a minimal increase
of S* (in the 4th decimal place, not shown). This result was consistent among all cluster
configurations apart from retaining six clusters, in which no KPCA preprocessed result
outperformed regular k-means analysis. For most configurations tested (except three
clusters), the best kernel for KPCA was consistently the radial basis function (RBF) with σ
values of similar magnitude as the NARR grid spacing (32-km). Overall, the three-cluster
solution using KPCA preprocessing with a linear kernel was used as the primary analysis
method for constructing the precipitation composites.

The selected optimal configurations resulted in groups of size 19, 13, and 11 for clusters
1–3 (note that cluster number is arbitrary so for this study they are sorted by decreasing
size). The resulting clusters showed interesting temporal trends (Figure 5). First, other
than the notable drop in frequency during the 1989–1998 period, the cluster 1 occurrence
rate remained relatively consistent over the study period, suggesting it could be related
to a mean pattern. Notably, the last three study years were also all entirely grouped into
cluster 1. Cluster 2′s frequency shows a different yet consistent trend, as its frequency
was highest during the 1989–1998 period and held steady for the last 20 years of the study
period. The results suggest that a possible decadal trend in the precipitation arrangement in
the SEUS is plausible, but more study years are needed to ensure this is the case. Cluster 3′s
results maintained a similar occurrence rate for all four decades presented in Figure 5 but
has become slightly more infrequent in recent decades.

The silhouette coefficients for the optimal configuration used in this study were telling
as well. The configuration yielded seven negative (misclustered) S values, six of which were
with cluster 1 (and were proximal to cluster 2). Cluster 1′s average S among its members
was 0.037, which was the lowest of all clusters (a result of the abundant negative S values).
Cluster 2′s results showed the highest overall average S (0.222), while cluster 3 had a value
near the global S* for the entire analysis (0.086). These results are important for several
reasons. First, they suggest there may be additional clusters to be gained from cluster 1,
which we deemed the mean cluster (see below). Second, the distinctiveness of cluster 2′s
silhouette values show it is the best separated of all clusters and its results are most likely
to match its respective cases. Finally, the cluster 3 average S values falling near the global
S* suggests cluster 3 is showing a pattern that is consistently distributed in time among the
clusters, which is seen in Figure 5 above.
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Figure 5. Frequency of each cluster’s members by decade. The frequency of each cluster’s occurrence
was highly consistent by decade with the exception of 1989–1998.

In addition to quantifying the cluster quality via the silhouette coefficient, we also
computed the average correlation between the constituent members and each cluster’s
composite mean precipitation map. These correlations scaled as a function of sample
size, with cluster 1′s average correlation at 0.830, cluster 2 at 0.706, and cluster 3 at 0.792.
Cluster 1 resembles the mean pattern (see below), and this elevated correlation coupled
with the largest sample size suggests the mean pattern is frequently in place in the SEUS
and has been consistent outside of the 1989–1998 decade. Likewise, the cluster 2 results (the
dry cluster, see below) have a much lower correlation, suggesting there may be multiple
configurations of “dry” SEUS conditions that should be explored in future work. Cluster
3′s intermediate correlation suggests the wet pattern (see below) is more consistent than
the dry pattern but there is still likely greater variability than with the mean.

Overall, the global S* values were quite low relative to other clustering studies that
used a similar metric [18,21,29,31]. This relatively low performance demonstrates the lack
of separability in these precipitation fields, suggesting precipitation patterns over the SEUS
likely deviate only slightly from the mean in most instances.

3.2. Cluster Map Results

The presented cluster analysis results are provided by arbitrary cluster numbers, so
the clusters are sorted by decreasing sample size (same as discussed in Section 3.1). Cluster
1′s composite map (Figure 6) correlated most strongly with the mean of all years (r = 0.963).
Its local precipitation maximum along the Gulf and Atlantic Coasts was also evident in the
mean field (Figure 2), and the areas of low precipitation farther inland in the mean field
were portrayed as well. This cluster had the highest membership count (N = 19), suggesting
that the mean pattern is overall most prevalent. The coastal maxima in precipitation seen
in these fields are consistent with daily sea breeze precipitation as well as tropical cyclone
landfalls (discussed further below). Additionally, work in [4,32] showed the impacts of
agriculture in reducing precipitation amount in the Mississippi Delta region and along
the Mississippi River in Arkansas and Tennessee. The mean field reflected this lack of
precipitation relative to the background mean state, suggesting that this pattern is not only
present, but it is the most frequently observed precipitation state for this part of the study
region. The dry regions along the Appalachians are associated with similar impacts and
seen in [33] as well, as their study noted a localized precipitation magnitude ridge along
the Georgia–South Carolina–North Carolina border, slightly west of the minimum over the
central Carolinas and Virginia.
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Figure 6. Cluster 1′s 15-day precipitation standard anomalies derived from KPCA-preprocessed
cluster analysis. This pattern closely matched the composite with no KPCA-preprocessing, but 2005
was included as part of this cluster.

In Cluster 2 (Figure 7), the general shape of the pattern matches the mean pattern,
though its correlation with the mean is the lowest of the three clusters (r = 0.903). Instead,
the largest differences result from magnitude shifts in the pattern, as precipitation mag-
nitudes are consistently lower across the entire study region. Notably, the dry regions
in the western SEUS states have expanded much farther eastward in this cluster, now
encompassing central and eastern states as well. The two separate dry regions in cluster 1
seemingly have merged into a larger dry region. Additionally, the coastal precipitation,
while still elevated relative to the remaining SEUS regions, showed considerable shrinking
of the maximum. This suggests that disregarding the precipitation associated with the
sea breeze circulation along the coast, precipitation patterns are drier across the entire
study domain. These results are consistent with their cluster membership, as the highly
impactful droughts of 1988 [34] and 1993 [35], among others, were members of cluster 2 and
highly correlated with its spatial pattern (r = 0.863 and r = 0.765, respectively). The results
shown in Figure 5 suggest each decade is associated with roughly 30% of years constituting
drought conditions, though in recent years cluster 2′s membership has dwindled as its last
member year was 2014.
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Figure 7. Cluster 2′s 15-day precipitation standard anomalies derived from KPCA-preprocessed
cluster analysis. This pattern was slightly different than the one with no KPCA-preprocessing as 2005
was not included as part of this composite.
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Cluster 3′s results (Figure 8) contrasted most prominently with cluster 2, as it showed
abundant above-average precipitation across most of the SEUS study region. It matches the
global mean pattern slightly better than cluster 2 (r = 0.930) but not as well as cluster 1. The
pattern showed an apparent spreading of the precipitation maximum along the Gulf Coast
to extend into central regions of the Gulf and Atlantic Coast states. The influence of the
drier air in the Desert Southwest is still evident in the western portions of this cluster, but
the region is confined much farther west as was seen in cluster 1. New key features emerged
in this cluster as well. First, the small precipitation ridge in northeastern Georgia and along
the western North Carolina/South Carolina border discussed in [33] was more pronounced
in this pattern than in cluster 1. Likewise, the relative dryness in the Mississippi Delta
region was missing in this cluster, despite lower precipitation values remaining in Arkansas
(a consequence of its proximity to the Great Plains and the influence of the drier conditions
in the southwest).
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Figure 8. Cluster 3′s 15-day precipitation standard anomalies derived from KPCA-preprocessed
cluster analysis. This pattern matched the cluster analysis with no KPCA-preprocessing.

Overall, the clusters showed strong similarities in terms of the dominant spatial
features. All clusters showed the driest conditions in the western portions of the SEUS
study domain, which resulted from the influence of more abundant drier conditions from
the desert southwest and its continental tropical air mass. All patterns also showed the
abundant coastal precipitation observed in the mean field, as well as relatively reduced
precipitation in the southern Appalachians (with the notable exception of the small precipi-
tation ridge in the western Carolinas and northeastern Georgia that was most apparent in
cluster 3). The similarities in these clusters were apparent in their correlations, as clusters 1
and 2 correlated at 0.837, clusters 1 and 3 at 0.852, and 2 and 3 at 0.835. Clearly, the cluster
analysis was detecting differences in magnitudes, not pattern, in establishing the dominant
precipitation patterns for the SEUS.

4. Discussion

To quantify the physical nature of the environment characterizing the different SEUS
warm-season precipitation clusters, simple composite average maps of base-state meteoro-
logical fields were constructed for each cluster using fields from the NARR. Expectedly,
these fields characterized a nearly barotropic environment for the full SEUS, with minimal
kinematic influences on precipitation as upper-level winds did not exceed 15 m/s for any
upper-level composite (not shown). Similarly, low-level kinematics were largely barotropic,
as seen by the minimal height gradient observed in Figure 9 for the 850 mb composite fields.
Moisture was largely the same for each composite field as well, but the warmer conditions
associated with the dry composite (cluster 2—Figure 9b) were clear in the western third of
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the domain as the hot dry air from the desert southwest had advanced farther eastward
in that composite. All fields, as expected via the traditional general circulation model, are
dominated by the subtropical high, further reinforcing the thermodynamic nature of the
precipitation processes that dominate SEUS warm season precipitation.
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In addition to the composite analysis, we investigated how each pattern related
to important climate drivers for SEUS warm season precipitation, namely the El-Niño–
southern oscillation [36] and tropical cyclone activity [10,11]. To quantify the ENSO phase
associated with each cluster, we used Oceanic Niño Index (ONI [37]) monthly data for the
warm season months for each year, using their mean to establish a single ONI for each
annual warm season (Figure 10 top panel). Instances where the ONI fell below −0.5 or
above 0.5 were indicated as a La Niña or El Niño event, respectively [37].
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Figure 10. Oceanic Niño Index by year (top panel) and SEUS landfalling tropical cyclone frequency
by year (bottom panel) for each cluster.

For our full study period, the ONI data showed 7 warm season SEUS La Niña patterns,
6 El Niño patterns, and 30 neutral phases (Figure 10, top panel). In cluster 1, 73.7% of its
member years were neutral ENSO phases, while 15.8% were El Niño and 10.5% La Niña.
However, cluster 1′s results did include two very strong El Niño events (1987 and 2015)
as well as one moderately strong La Niña in 2010. The prevalence of neutral patterns and
balance between El Niño and La Niña did not show a favorability of cluster 1 towards a
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given phase of ENSO, which reinforces the earlier conclusion that this field is most like a
mean pattern for precipitation.

This result contrasts starkly with the results for cluster 2, which had numerous mem-
bers in the La Niña phase (30.8%) with only 61.5% neutral and 7.7% in the El Niño phase.
This second pattern, which is a strongly dry pattern, is consistent with the literature re-
garding ENSO phase and SEUS precipitation, namely that La Niña patterns are associated
with drier conditions [36]. Cluster 3′s results showed the highest prevalence of El Niño
events (18.1%) relative to its cluster size, as well as a similar prevalence of neutral ENSO
phases (72.7%) and the lowest La Niña percentage (9.1%). However, the differences in
these ratios between clusters 1 and 3 are not dramatic, which suggests that an El Niño
could result in a structure more in line with either cluster 1 or 3. As the El Niño phase is
generally associated with more abundant SEUS precipitation, this result is consistent with
the patterns portrayed by the cluster analysis.

Previous studies ([10,11] and others) have shown the importance of landfalling tropical
cyclones (Figure 10 bottom panel) on above-average SEUS precipitation. To establish signif-
icant differences among the clusters in terms of tropical cyclone landfalls, we computed
95% bootstrap confidence intervals [38] for each cluster’s landfall count (Table 3). These
results revealed a statistically significant decrease in tropical cyclone landfalls for cluster 2
when compared to both clusters 1 and 3. This result reinforces the results in [10,11] that
suggest tropical cyclone landfalls are important precipitation moderators during the SEUS
warm season. Notably, no significant differences exist between clusters 1 and 3, suggesting
abundant tropical cyclone landfalls are having less of an effect on high precipitation SEUS
warm season patterns.

Table 3. Bootstrap confidence intervals of 95% and medians for average annual SEUS landfalling
tropical cyclones, broken down by cluster. If the median bootstrap replicate falls outside the interval
for the other clusters, the difference was deemed statistically significant. Here, cluster 2 is significantly
different than clusters 1 and 3, though clusters 1 and 3 are not statistically significantly different.

Percentile Cluster 1 Cluster 2 Cluster 3

2.5% 1.158 0.615 0.907
50% 1.895 1.077 1.910

97.5% 2.737 1.615 3.090

The year 2005 was isolated as a unique year by the cluster analysis, as the only
difference between the KPCA and traditional analyses was the placement of 2005 in cluster
1 (with KPCA) versus cluster 2 (without KPCA). The precipitation anomaly field for 2005
(Figure 11) shows a pattern with highly abundant precipitation along the coast and into
Georgia and South Carolina, more in line with a pattern expected to fall in cluster 3.
However, notably dry conditions were present across the Mississippi River Valley, which
was more aligned with cluster 2′s pattern. Hence, the placement in cluster 1 (the near-
mean pattern) was deemed more appropriate for 2005. The 2005 hurricane season was an
historic event, with six strong landfalling tropical cyclones (including hurricanes Katrina,
Rita, and Wilma) that all traversed the heavy precipitation region in Figure 11. It is likely
that without those strong storms, 2005 would have been clustered with cluster 2, based
on its relatively low precipitation elsewhere, showing how a single year had a dramatic
influence on the overall SEUS precipitation climatology. This result shows KPCA’s ability to
detect anomalous features within the dataset and cluster those features more appropriately,
demonstrated by the boost in S* and the overall blend of clusters 2 and 3 present in the 2005
season. We expect that as the sample size of precipitation years increases, this sensitivity of
the cluster analysis to individual outlier years will be reduced.
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Figure 11. Precipitation anomalies for the 2005 warm season. Note the elevated precipitation along
the Gulf Coast and into Georgia and the Carolinas coupled with the anomalously dry conditions in
the northern and western portions of the study domain.

5. Conclusions

SEUS warm season precipitation is a critical resource for regional agricultural produc-
tivity and hydrologic processes, making it a key factor in social and economic sustainability.
However, as warm season rainfall is driven primarily by thermodynamic (convective)
processes that have inherently low predictability, prior knowledge of abundant and lim-
ited precipitation regions via climatological analysis can have value when identifying
water resource patterns and sensitive areas. Numerous previous studies [2–12,14,15,22–24]
have investigated different aspects of SEUS precipitation, either by region (such as the
Appalachian or coastal areas) or by meteorological mechanisms responsible for the pre-
cipitation. However, these studies were inherently limited to monthly time scales and
utilized primarily linear techniques when identifying dominant precipitation patterns. This
limitation could result in the loss of nonlinear variability information that may be important
in SEUS precipitation climatology. Hence, the objective of our study was to develop an
updated warm season SEUS precipitation climatology based on 15-day moving sums and
employ a nonlinear cluster analysis method via kernel PCA to define temporal clusters.

When applying KPCA-preprocessing to the 15-day moving sum SEUS precipitation
fields, we found that three primary clusters were consistently prevalent within those fields.
All three clusters (Figures 6–8) strongly resembled the mean field (Figure 2a) in terms of the
spatial shape of the precipitation (r > 0.9), but magnitudes of each cluster were dramatically
different. Cluster 1 (N = 19) showed a pattern that most strongly resembled the mean
pattern in terms of its shape, and the precipitation anomaly magnitudes were intermediate
between the other two clusters, suggesting cluster 1 was the mean precipitation pattern.
This pattern, much like the global mean in Figure 2a, was associated with abundant
precipitation along the Gulf and Atlantic Coasts that was primarily associated with sea
breeze effects and tropical cyclone landfalls, as well as a relative lack of precipitation over
the western portion of the domain and southern Appalachians. We also identified a small
regional precipitation ridge encompassing northeastern Georgia and the western North
Carolina/South Carolina border that was consistent with precipitation climatology work
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seen in [33]. Cluster 2′s pattern (N = 13) showed considerably drier conditions throughout
the study domain, while cluster 3′s pattern (N = 11) showed the wettest conditions of
the three clusters. All clusters correlated strongly with the mean pattern, with cluster 1
showing the strongest relationship (0.963).

Expectedly, the synoptic composite fields associated with each cluster revealed a
strongly barotropic environment with minimal thermal gradients that was dominated by the
subtropical high. When comparing the resulting composites with climate-scale precipitation
drivers, we noted that cluster 2 was strongly associated with La Niña conditions, while
clusters 1 and 3 showed a similar percentage of both neutral and El Niño phases. Likewise,
cluster 2 showed a statistically significantly lower tropical cyclone landfall frequency,
suggesting that the drier conditions from the La Niña coupled with reduced landfalling
tropical cyclones led to the dearth of precipitation. Notably, KPCA preprocessing made
only a marginal improvement in the cluster metric S* (roughly 2%) as it suggested shifting
the 2005 annual pattern from cluster 2 (the dry cluster) to cluster 1 (the mean cluster). As
2005 was associated with notably high tropical cyclone frequency but had drier conditions
throughout the rest of the SEUS, the difficulty in clustering 2005 was not surprising but
demonstrated the added value of the KPCA.

There were several limitations to this work. First, the NARR precipitation data, while
continuous in time and space, are still based on a model-derived reanalysis product that
has some inherent limitations (especially over water). The somewhat arbitrary selection
of a 15-day moving sum could have affected the results as well, though we tested 31- and
45-day centered moving sums (not shown) and results were similar. It is possible the
KPCA methodology did not identify the local maximum in cluster analysis performance,
as several configurations yielded notably high S* values but retained a mean field with
clusters of 1–2 members as the remaining cases. Additional cluster analysis methods should
be explored in future work.

Overall, we have reinforced the work of several studies that considered SEUS pre-
cipitation climatology and have found that those results hold up even when tested with
a nonlinear cluster analysis method. These results revealed localized challenges in water
resources, most notably the risk for flooding in southern Appalachian areas and along the
coastlines, as well as those areas which may be more sensitive to drought in the western
SEUS region and along the Mississippi River. This climatology can help inform future
studies investigating water resources available from warm season SEUS precipitation.
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